Following glycolysis, the mechanism of cellular respiration involves another multi-step process
—the Krebs cycle, which is also called the citric acid cycle or the tricarboxylic acid cycle.
The Krebs cycle uses the two molecules of pyruvic acid formed in glycolysis and yields high-energy molecules of NADH and flavin adenine dinucleotide (FADH2), as well as some ATP.
This sausage-shaped organelle possesses inner and outer membranes and, therefore, inner and outer compartments.
The inner membrane is folded over itself many times; the folds are called cristae.
They are somewhat similar to the thylakoid membranes in chloroplasts (see Chapter 5).
Located along the cristae are the important enzymes necessary for the proton pump and for ATP production.
Prior to entering the Krebs cycle, the pyruvic acid molecules are altered.
Each three-carbon pyruvic acid molecule undergoes conversion to a substance called acetyl-coenzyme A, or acetyl-CoA.
During the process, the pyruvic acid molecule is broken down by an enzyme, one carbon atom is released in the form of carbon dioxide, and the remaining two carbon atoms are combined with a coenzyme called coenzyme A.
This combination forms acetyl-CoA.
In the process, electrons and a hydrogen ion are transferred to NAD to form high-energy NADH.
Acetyl-CoA enters the Krebs cycle by combining with a four-carbon acid called oxaloacetic acid.
The combination forms the six-carbon acid called citric acid.
Citric acid undergoes a series of enzyme-catalyzed conversions.
The conversions, which involve up to ten chemical reactions, are all brought about by enzymes.
In one of the steps, FAD serves as the electron acceptor, and it acquires two hydrogen ions to become FADH2.
Also, in one of the reactions, enough energy is released to synthesize a molecule of ATP.
Because for each glucose molecule there are two pyruvic acid molecules entering the system, two ATP molecules are formed.
Also during the Krebs cycle, the two carbon atoms of acetyl-CoA are released, and each forms a carbon dioxide molecule.
Thus, for each acetyl-CoA entering the cycle, two carbon dioxide molecules are formed.
Two acetyl-CoA molecules enter the cycle, and each has two carbon atoms, so four carbon dioxide molecules will form.
Add these four molecules to the two carbon dioxide molecules formed in the conversion of pyruvic acid to acetyl-CoA, and it adds up to six carbon dioxide molecules.
These six CO2 molecules are given off as waste gas in the Krebs cycle.
They represent the six carbons of glucose that originally entered the process of glycolysis.
At the end of the Krebs cycle, the final product is oxaloacetic acid.
This is identical to the oxaloacetic acid that begins the cycle.
Now the molecule is ready to accept another acetyl-CoA molecule to begin another turn of the cycle.
All told, the Krebs cycle forms (per two molecules of pyruvic acid) two ATP molecules, ten NADH molecules, and two FADH2 molecules.
The NADH and the FADH2 will be used in the electron transport system.
Scholarship 2024/25
Current Scholarships 2024/2025 - Fully Funded
Full Undergraduate Scholarships 2024 - 2025
Fully Funded Masters Scholarships 2024 - 25
PhD Scholarships for International Students - Fully Funded!
Funding Opportunities for Journalists 2024/2025
Funding for Entrepreneurs 2024/2025
***